JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Mitochondrial Ca2+ Retention Capacity Assay and Ca2+-triggered Mitochondrial Swelling Assay.

The production of ATP by oxidative phosphorylation is the primary function of mitochondria. Mitochondria in higher eukaryotes also participate in cytosolic Ca2+ buffering, and the ATP production in mitochondrial can be mediated by intramitochondrial free Ca2+ concentration. Ca2+ retention capacity can be regarded as the capability of mitochondria to retain calcium in the mitochondrial matrix. Accumulated intracellular Ca2+ leads to the permeability of the inner mitochondrial membrane, termed the opening of mitochondrial permeability transition pore (mPTP), which leads to the leakage of molecules with a molecular weight less than 1.5 kDa. Ca2+ -triggered mitochondria swelling is used to indicate the mPTP opening. Here, we describe two assays to examine the Ca2+ retention capacity and Ca2+ -triggered mitochondrial swelling in isolated mitochondria. After certain amounts of Ca2+ are added, all steps can be completed in one day and recorded by a microplate reader. Thus, these two simple and effective assays can be adopted to assess the Ca2+ -related mitochondrial functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app