Add like
Add dislike
Add to saved papers

Conditioned Reward of Opioids, but not Psychostimulants, is Impaired in GABA-A Receptor δ Subunit Knockout Mice.

Extrasynaptic δ subunit-containing γ-aminobutyric acid type A receptors (δ-GABAA Rs) are emerging as targets for a number of neuropsychopharmacological drugs, including the direct GABA site agonist gaboxadol and neuroactive steroids. Among other regions, these δ-GABAA Rs are functionally expressed in the ventral tegmental area (VTA), the cell body region of mesocorticolimbic dopamine (DA) system important for motivated behaviours, and in the target region, the nucleus accumbens. Gaboxadol and neurosteroids induce VTA DA neuron plasticity ex vivo, by inhibiting the VTA GABA neurons, and aversive place conditioning, which are absent in the δ-GABAA R knockout mice (δ-KO). It is not known whether δ-GABAA Rs are important for the effects of other drugs, such as opioids (that also inhibit GABA neurons) and stimulants (that primarily elevate monoamine levels). Here, we used δ-KO mice and conditioned place preference (CPP) test to study the rewarding effects of morphine (20 mg/kg), methamphetamine (1 mg/kg) and mephedrone (5 mg/kg). Morphine-induced nociception was also assessed using tail-flick and hot-plate tests. We found that the δ-KO mice failed to express morphine-induced CPP, but that they were more sensitive to morphine-induced analgesia in the tail-flick test. In contrast, stimulant-induced CPP in the δ-KO mice was similar to that in the wild-type controls. Thus, the conditioned rewarding effect by opioids, but not that of stimulants, was impaired in the absence of δ-GABAA Rs. Further studies are warranted to assess the potential of δ-GABAA R antagonists as possible targets for reducing morphine reward and potentiating morphine analgesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app