Add like
Add dislike
Add to saved papers

Downregulation of lncRNA MALAT1 contributes to renal functional improvement after duodenal-jejunal bypass in a diabetic rat model.

Ameliorated renal function has been reported after bariatric surgery, but the mechanisms underlying this phenomenon are not well-studied. To investigate whether the long non-coding RNA (lncRNA) MALAT1 mediates the amelioration of diabetic nephropathy after duodenal-jejunal bypass (DJB) surgery, rats were assigned randomly into four groups: diabetic (DM) group, DM with DJB surgery group, DM with sham surgery group, and healthy control group. Food intake, body weight, oral glucose tolerance test (OGTT), urine albumin excretion rate (UAER), and glomerular filtration rate (GFR) were measured and histological examination of renal sections was performed. For in vitro study, HK-2 cells were cultured under various glucose concentrations following MALAT1 siRNA transfection. Expression levels of MALAT1, SAA3, IL-6, and TNF-α in rat renal tissues or HK-2 cell lines were evaluated by qRT-PCR and/or ELISA. Results showed DJB surgery improved the renal function of diabetic rats, as indicated by ameliorated UAER and GFR and attenuated glomerular hypertrophy. Expression of MALAT1 and its downstream target SAA3 was significantly downregulated in renal tissues after DJB, which in turn decreased the expression of the pro-inflammatory cytokines IL-6 and TNF-α. Knockdown of MALAT1 in HK-2 cell lines further confirmed that expression levels of SAA3, IL-6, and TNF-α were regulated by MALAT1 under both low- and high-glucose conditions. Our findings suggest that MALAT1 is implicated in the improvement of renal function after DJB through regulation of its downstream targets SAA3, IL-6, and TNF-α.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app