Add like
Add dislike
Add to saved papers

The predictive power of aromaticity: quantitative correlation between aromaticity and ionization potentials and HOMO-LUMO gaps in oligomers of benzene, pyrrole, furan, and thiophene.

Aromaticity is a central and ubiquitous concept in organic chemistry, and is used extensively to explain various phenomena. Yet, aromaticity cannot be observed or measured as a property in its own right and, to date, only qualitative and semi-quantitative relationships have been described between aromaticity and an observable property. We now demonstrate for the first time a robust quantitative relationship between the HOMO-LUMO gap and adiabatic ionization potential of a polycyclic aromatic hydrocarbon oligomer - both measurable physical quantities - and its aromaticity, as quantified by the Nucleus Independent Chemical Shift (NICS) index. The agreement found for a range of structurally and electronically diverse oligomeric systems of varying lengths is so well-behaved as to enable accurate prediction of the properties of longer members of the respective oligomer family. The established correlation allows for preliminary screening of compounds geared towards functional use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app