Add like
Add dislike
Add to saved papers

Biosynthetic Insights of Calyculin- and Misakinolide-Type Compounds in "Candidatus Entotheonella sp."

Microbial symbionts are recognized as the important sources of numerous sponge-derived metabolites with potent biological activities. The limitation to cultivate the majority of potential symbionts has hampered attempts to explore and exploit their natural products for further development toward medical applications. Metagenomics-guided approaches have enabled cloning of natural product biosynthesis genes from uncultured microbial symbionts. Subsequent activation of biosynthesis genes in easily culturable bacteria could lead to the sustainable production of rare sponge-derived compounds. In this chapter, we highlight metagenomic strategies to reveal natural product biosynthetic pathways in sponge metagenomes based on the calyculin and misakinolide polyketides. Techniques to identify the compound producer are briefly discussed. We further describe examples of functional studies of the biosynthetic pathways of these two compound types with a special emphasis on the general experimental protocols for the activity assays of key proteins involved in their biosynthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app