JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Mouse models of peripheral metabolic disease.

Metabolic disease risk is driven by defects in the function of cells that regulate energy homeostasis, as well as altered communication between the different tissues or organs that these cells occupy. Thus, it is desirable to use model organisms to understand the contribution of different cells, tissues and organs to metabolism. Mice are widely used for metabolic research, since well-characterised mouse strains (in terms of their genotype and phenotype) allow comparative studies and human disease modelling. Such research involves strains containing spontaneous mutations that lead to obesity and diabetes, surgically- and chemically-induced models, those that are secondary to caloric excess, genetic mutants created by transgenesis and gene knockout technologies, and peripheral models generated by Cre-Lox or CRISPR/Cas9 approaches. Focussing on obesity and type 2 diabetes as relevant metabolic diseases, we systematically review each of these models, discussing their use, limitations, and future potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app