JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Geometrical constraint of sources in noninvasive localization of premature ventricular contractions.

The inverse problem of electrocardiography for localization of a premature ventricular contraction (PVC) origin was solved and compared for three types of the equivalent cardiac electrical generator: transmembrane voltages, epicardial potentials, and dipoles. Instead of regularization methods usually used for the ill-posed inverse problems an assumption of a single point source representative of the heart generator was applied to the solution as a geometrical constraint. Body surface potential maps were simulated from eight modeled origins of the PVC in the heart model. Then the maps were corrupted by additional Gaussian noise with the signal-to-noise ratio (SNR) from 20 to 10dB and used as the input of the inverse solution. The inverse solution was computed from the first 30ms of the ventricular depolarization. It was assumed that during this period only a small part of the heart volume is activated thus it can be represented by a single point electrical source. Generally, the localization error was more dependent on the PVC origin position than on the type of the used heart generator. The most stable localization error between the inversely found results and the true PVC origin was not larger than 20mm for PVC origins located in the left ventricular wall and on the right ventricular anterior side. For such cases, the localization was robust to the noise up to SNR of 10dB for all studied types of the cardiac generator. For SNR 10dB the results became unstable mainly for the PVC origins in the septum and posterior right ventricle for the dipolar heart generator and for epicardial potentials defined on the pericardium when the range of the localization error increased up to 50mm. When the results for different electrical heart generators were considered altogether, the mean radius of the cloud of results did not exceed 20mm and the localization error of the cloud center was smaller than that obtained for a particular type of the cardiac generator. Combination of results from different models of a single point cardiac electrical generator can provide better information for the preliminary noninvasive localization of PVC than the use of one type of the generator.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app