Add like
Add dislike
Add to saved papers

Copper (II) and/or arsenite-induced oxidative stress cascades apoptosis and autophagy in the skeletal muscles of chicken.

Chemosphere 2018 September
Arsenic (As) is a ubiquitous environmental toxin and robust inducer of oxidative stress (OxS). Copper (Cu) is an essential microelement, which participates in OxS as a cofactor for certain enzymes, with narrow optimal range between essential and toxic concentrations. However, their effects are rarely studied in chicken skeletal muscles, which have soaring per capita consumption andare susceptible to oxidative damage. In the present study, we demonstrated that the administration of copper sulfate (300 mg kg-1 ) or arsenite (30 mg kg-1 ) individually or their co-administration leads to varying degrees of OxS in the skeletal muscles of chickens. Corresponding to the protein expression pattern, the mRNA levels of caspase, B-cell lymphoma-2 (Bcl-2) families, and autophagy-related genes were also compromised in the experimental groups, indicating the involvement of both apoptotic and autophagic cell death. Additionally, rampant mitochondrial fission caused the vicious cycle between imbalanced mitochondrial dynamics and OxS, thus tethering intracellular homeostasis. The abovementioned muscle damage and index anomalies were time dependent, and more deteriorated effects were observed in Cu2+ and arsenite co-administered groups than those in groups administered Cu2+ and arsenite alone. Intriguingly, in the studied skeletal muscles, namely wing biceps brachii and leg gastrocnemius, there were conspicuous differences in oxidative toxicity susceptibility, which needs further study. The present study showed that Cu and/or As induce oxidative damage in chicken skeletal muscles and discussed its mechanism in terms of apoptosis, autophagy, and mitochondrial dynamics, thus voicing concerns about poultry breeding areas cross-contaminated with Cu2+ and arsenite.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app