Add like
Add dislike
Add to saved papers

Neurotoxic impact of acute TiO 2 nanoparticle exposure on a benthic marine bivalve mollusk, Tegillarca granosa.

The release of nanoparticles (NPs) into the ocean inevitably poses a threat to marine organisms. However, to date, the neurotoxic effects of NPs remains poorly understood in marine bivalve species. Therefore, in order to gain a better understanding of the physiological effects of NPs, the impact of acute (96 h) TiO2 NP exposure on the in vivo concentrations of three major neurotransmitters, the activity of AChE, and the expression of neurotransmitter-related genes was investigated in the blood clam, Tegillarca granosa. The obtained results showed that the in vivo concentrations of the three tested neurotransmitters (DA, GABA, and ACh) were significantly increased when exposed to relatively high doses of TiO2 NPs (1 mg/L for DA and 10 mg/L for ACh and GABA). Additionally, clams exposed to seawater contaminated with TiO2 NP had significantly lower AChE activity. In addition, the expression of genes encoding modulatory enzymes (AChE, GABAT, and MAO) and receptors (mAChR3, GABAD, and DRD3) for the neurotransmitters tested were all significantly down-regulated after TiO2 NP exposure. Therefore, this study has demonstrated the evident neurotoxic impact of TiO2 NPs in T. granosa, which may have significant consequences for a number of the organism's physiological processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app