Add like
Add dislike
Add to saved papers

Derivatization method for the quantification of lactic acid in cell culture media via gas chromatography and applications in the study of cell glycometabolism.

Lactic acid represents an important metabolite that reflects mitochondria function and may further serve as energy source for cancer cells. In light of this physiological and pathological significance, we developed a novel and sensitive gas chromatography method to detect lactic acid in cell culture media. Here, ethyl chloroformate was selected as derivative reagent and the derivatization process was further optimized in terms of number of reagents and reaction time as well as extraction reagents. Under optimal conditions, good linearity was achieved in the tested calibration range. The limit of detection (LOD) was determined to be 0.67 μmol/L, the recovery rates were 99.6%-106% and the precision rate RSD was <5.49%. Furthermore, this method has been applied to quantify the secretion of lactic acid in cells exposed to mono‑2‑ethylhexyl phthalate at different doses and in cancer cells over time. Taken in concert, our method proved to be both sensitive and reliable and may be applied for studies on mitochondrial function and cell glycolysis conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app