Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Structural basis for selective inhibition of antibacterial target MraY, a membrane-bound enzyme involved in peptidoglycan synthesis.

The rapid growth of antibiotic-resistant bacterial infections is of major concern for human health. Therefore, it is of great importance to characterize novel targets for the development of antibacterial drugs. One promising protein target is MraY (UDP-N-acetylmuramyl-pentapeptide: undecaprenyl phosphate N-acetylmuramyl-pentapeptide-1-phosphate transferase or MurNAc-1-P-transferase), which is essential for bacterial cell wall synthesis. Here, we summarize recent breakthroughs in structural studies of bacterial MraYs and the closely related human GPT (UDP-N-acetylglucosamine: dolichyl phosphate N-acetylglucosamine-1-phosphate transferase or GlcNAc-1-P-transferase). We present a detailed comparison of interaction modes with the natural product inhibitors tunicamycin and muraymycin D2. Finally, we speculate on possible routes to design an antibacterial agent in the form of a potent and selective inhibitor against MraY.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app