Add like
Add dislike
Add to saved papers

Manure digestate storage under different conditions: Chemical characteristics and contaminant residuals.

In this study, chemical characteristics and contaminant residuals in livestock manure digestate were investigated during storage under different conditions. Results show that storing digestate openly under the mesophilic condition (30 ± 1 °C) led to water evaporation and thus considerable mass reduction. As a result, concentrative effect occurred to increase the contents of organic matter, nutrients, and heavy metals during digestate storage. By contrast, ammonium (NH4 + ) concentration in digestate decreased over storage period. The concentrative effect and NH4 + reduction could be mitigated by storing digestate with coverage and/or under psychrophilic conditions (e.g. 15 ± 1 °C). Regardless of storage conditions, organic matter was further biodegraded, thereby reducing the residuals of antibiotics in digestate. Antibiotic removal was more notable when digestate was stored under mesophilic conditions. Nevertheless, additional processes to control heavy metals and antibiotics in digestate are still necessary before agricultural applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app