Add like
Add dislike
Add to saved papers

The effect of exposure to sub-inhibitory concentrations of hypochlorite and quaternary ammonium compounds on antimicrobial susceptibility of Pseudomonas aeruginosa.

BACKGROUND: Pseudomonas is a group of medically important species that inhabit a wide range of niches, including hospital environments. Controversies have emerged about the possible link between improper use of disinfectants and the emergence of antibiotic resistance in bacteria. The aim of this study was to assess the effect of exposure of antibiotic-susceptible Pseudomonas isolates to sub-inhibitory concentrations of 2 disinfectants-didecyldimonium chloride and sodium hypochlorite-on their antibiotic susceptibility patterns.

METHODS: This study involved 50 Pseudomonas isolates. The antibiotic susceptibility patterns of the isolates were assessed using broth microdilution method. The minimal inhibitory concentrations (MICs) of each antibiotic were compared before and after exposure to sub-inhibitory concentrations of didecyldimonium chloride and sodium hypochlorite.

RESULTS: After overnight incubation with sub-inhibitory concentrations of sodium hypochlorite, a statistically significant increase was observed in the MICs of colistin (P = .012), ceftazidime (P < .001), amikacin (P < .001), meropenem (P < .001), gentamicin (P < .001), piperacillin-tazobactam (P = .003), and ciprofloxacin (P = .004). In contrast, exposure to sub-inhibitory concentrations of didecyldimonium chloride showed a statistically significant increase in the MICs of amikacin (P < .001), gentamicin (P < .001), meropenem (P = .041), and ciprofloxacin (P = .008).

CONCLUSIONS: The use of suboptimal concentrations of sodium hypochlorite and didecyldimonium chloride can lead to the evolution of antibiotic-resistant Pseudomonas strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app