Add like
Add dislike
Add to saved papers

Porcine monocyte-derived dendritic cells can be differentially activated by vesicular stomatitis virus and its matrix protein mutants.

Vesicular stomatitis virus (VSV) can cause serious vesicular lesions in pigs, and the matrix (M) protein is its predominant virulence factor. Dendritic cells (DCs) act as the bridge between innate and adaptive immune responses. However, the susceptibility of porcine DCs to VSV infection and the role of M protein in modulating the function of infected DCs are still poorly defined. Thus, this study aimed to determine the ability of virulent wild-type VSV(wtVSV) and two attenuated M protein variants (VSVΔM51 and VSVMT ) to induce maturation of porcine monocyte-derived DCs (MoDCs) in vitro. It was found that both wtVSV and the M protein mutant VSVs could productively replicate in porcine MoDCs. Infection with wtVSV resulted in weak proinflammatory cytokine responses and interfered with DC maturation via downregulation of the costimulatory molecule complex CD80/86. Whilst VSVΔM51 could activate porcine MoDCs, VSVMT , a highly attenuated recombinant VSV with triple mutations in the M protein, induced a potent maturation of MoDCs, as evidenced by efficient cytokine induction, and upregulation of CD80/86 and MHC class II. Overall, our findings reveal that porcine MoDCs are differentially activated by VSV, dependent on the presence of a functional M protein. M protein plays a crucial role in modulating porcine DC-VSV interactions. The data further support the potential use of VSVMT as a vaccine vector for pigs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app