Add like
Add dislike
Add to saved papers

Patchy gold coated Fe 3 O 4 nanospheres with enhanced catalytic activity applied for paper-based bipolar electrode-electrochemiluminescence aptasensors.

In this work, novel multifunctional patchy gold coated Fe3 O4 hybrid nanoparticles (PG-Fe3 O4 NPs) have been successfully synthesized in aqueous medium via a facile adsorption-reduction method. A rational formation mechanism has been proposed by monitoring the morphological evolution. The PG-Fe3 O4 NPs retained the good magnetic property and exhibited excellent catalytical effeciency towards the electrochemical reduction of hydrogen peroxide. Chronoamperometric and amperometric experiments indicated a relatively high catalytic rate constant of 3.13 × 105 M-1 s-1 , a high sensitivity of 578.87 µA mM-1 cm-2 and a low Michaelis-Menten constant of 462 µM. Meanwhile, the introduction of patchy gold could help biofunctionalization via Au-S bond for different biodetection and biosensing purposes. Here, as an example, thiol-terminated aptamers were immobilized onto the patchy gold part as a signal probe to detect carcinoembryonic antigen (CEA). A related paper-based bipolar electrode-electrochemiluminescence (pBPE-ECL) aptasensor was fabricated as the low-cost, disposable and miniature platform. To improve the sensitivity, Au nanodendrites were electrodeposited at the BPE cathode as the matrix for Apt1 immobilization. This aptasensor showed a wide linear range of 0.1 pg mL-1 -15 ng mL-1 with a low detection limit of 0.03 pg mL-1 , remaining competitive against other ones, and also demonstrating the PG-Fe3 O4 NPs have promising potential for catalysis and bioassays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app