JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Computer simulation of neutral drift among limbal epithelial stem cells of mosaic mice.

The use of mice that are mosaic for reporter gene expression underlies many lineage-tracing studies in stem cell biology. For example, using mosaic LacZ reporter mice, it was shown that limbal epithelial stem cells (LESCs) around the periphery of the cornea maintain radial sectors of the corneal epithelium and that radial stripe numbers declined with age. Originally, the corneal results were interpreted as progressive, age-related loss or irreversible inactivation of some LESC clones. In this study we used computer simulations to show that these results could also be explained by stochastic replacement of LESCs by neighbouring LESCs, leading to neutral drift of LESC populations. This was shown to reduce the number of coherent clones of LESCs and hence would coarsen the mosaic pattern in the corneal epithelium without reducing the absolute number of LESCs. Simulations also showed that corrected stripe numbers declined more slowly when LESCs were grouped non-randomly and that mosaicism was rarely lost unless simulated LESC numbers were unrealistically low. Possible reasons why age-related changes differ between mosaic corneal epithelia and other systems, such as adrenal cortices and intestinal crypts, are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app