Add like
Add dislike
Add to saved papers

Inhibition of BET bromodomains restores corticosteroid responsiveness in a mixed granulocytic mouse model of asthma.

Asthma is a heterogeneous disease characterized by different endotypes/phenotypes. Th2/Th17 driven mixed granulocytic asthma is one of them and shows resistance to corticosteroid therapy. Bromodomain and extra-terminal (BET) proteins are required for differentiation of Th17 cells which play a pivotal role in neutrophilic inflammation. Therefore, we sought to characterize the differential effects of BET inhibitor versus corticosteroids, and their potential synergism in cockroach allergen extract (CE)-induced mixed granulocytic (eosinophilic and neutrophilic) mouse model of asthma having Th2/Th17 endotype. Effects of BET inhibitor, (+)JQ-1 alone and in combination with dexamethasone (Dexa) were assessed on airway inflammation as well as Th2/Th17 related airway immune responses in CE-induced mixed granulocytic asthma. Markers of steroid resistance [histone deacetylase 2 (HDAC2), and oxidative stress] were also assessed in the lungs of mice and primary human bronchial epithelial cells (HBECs). BET inhibitor, (+)JQ-1 abolished Th17 driven neutrophilic inflammation in CE-induced mixed granulocytic asthma. Dexa had limited effect on overall airway inflammation despite having significant reductions in Th2 driven immune responses. However, combination of (+)JQ-1 with Dexa completely blocked both Th2 and /Th17 driven immune responses in the lung which led to significant reductions in eosinophils, neutrophils, and mucin secretion. (+)JQ-1 also reversed CE- and IL-17A-induced decrease in HDAC2 expression in murine and human airway epithelial cells respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app