Add like
Add dislike
Add to saved papers

IL-3-producing basophils are required to exacerbate airway hyperresponsiveness in a murine inflammatory model.

Allergy 2018 December
BACKGROUND: Basophils are commonly associated with allergic responses because of their ability to produce large amounts of pro-Th2 cytokines and histamine. However, the mechanisms through which bone marrow-resident basophils (BMRB) become fully competent cytokine and histamine producers in response to IgE crosslinking are poorly understood. Here, we sought to determine the role of IL-3 in promoting pro-Th2 basophils.

METHODS: BMRB and basophils exposed to IL-3 in vitro and in vivo were evaluated for their production of Th2 cytokines and histamine in response to FcεRI crosslinking on both protein and gene expression levels. In vivo relevance of our findings was assessed in a model of ovalbumin-induced allergic asthma using IL-3-deficient and wild-type mice in a protocol of adoptive basophil transfer.

RESULTS: We show that BMRB and basophils previously exposed to IL-3 differ in their ability to generate cytokines (IL-4, IL-6, IL-13, and GM-CSF) and histamine in response to FcεRI crosslinking, reflecting two stages of maturation. Exposure to IL-3 initiated an autocrine loop of endogenous IL-3 production that enhanced histamine and cytokine production upon FcεRI crosslinking. This increased responsiveness required calcium flux and was dependent on calcineurin and store-operated calcium channels. Our findings are of pathophysiological relevance, as assessed by the failure of IL-3-deficient mice to develop airway hyperreactivity, which could be restored by adoptive transfer of IL-3-derived basophils recovered from wild-type mice.

CONCLUSION: IL-3-dependent basophils promote Th2 allergic AHR, which designates the IL-3/basophil axis as a promising therapeutic target for the treatment of basophil-dependent asthma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app