Add like
Add dislike
Add to saved papers

Cost-efficient magnetic nanoporous carbon derived from citrus peel for the selective adsorption of seven insecticides.

A magnetic solid-phase extraction adsorbent that consisted of citrus peel-derived nanoporous carbon and silica-coated Fe3 O4 microspheres (C/SiO2 @Fe3 O4 ) was successfully fabricated by co-precipitation. As a modifier for magnetic microspheres, citrus peel-derived nanoporous carbon was not only economical and renewable for its raw material, but exerted enormous nanosized pore structure, which could directly influence the type of adsorbed analytes. The C/SiO2 @Fe3 O4 also possessed the advantages of Fe3 O4 microspheres like superparamagnetism, which could be easily separated magnetically after adsorption. Integrating the superior of biomass-derived nanoporous carbon and Fe3 O4 microspheres, the as-prepared C/SiO2 @Fe3 O4 showed high extraction efficiency for target analytes. The obtained material was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and the Brunauer-Emmett-Teller method, which demonstrated that C/SiO2 @Fe3 O4 was successfully synthesized. Under the optimal conditions, the adsorbent was selected for the selective adsorption of seven insecticides before gas chromatography with mass spectrometry detection, and good linearity was obtained in the concentration range of 2-200 μg/kg with the correlation coefficient ranging from 0.9952 to 0.9997. The limits of detection were in the range of 0.03-0.39 μg/kg. The proposed method has been successfully applied to the enrichment and detection of seven insecticides in real vegetable samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app