Add like
Add dislike
Add to saved papers

Noninvasively evaluating the grading and IDH1 mutation status of diffuse gliomas by three-dimensional pseudo-continuous arterial spin labeling and diffusion-weighted imaging.

Neuroradiology 2018 July
PURPOSE: To noninvasively evaluate the value of three-dimensional pseudo-continuous arterial spin labeling (3D pCASL) and diffusion-weighted imaging (DWI) in diffuse gliomas grading as well as isocitrate dehydrogenase (IDH) 1 mutation status.

METHODS: Fifty-six patients with pathologically confirmed diffuse gliomas with preoperative 3D pCASL and DWI were enrolled in this study. The Student's t test and Mann-Whitney U test were used to evaluate differences in parameters of DWI and 3D pCASL between low and high grade as well as between mutant and wild-type IDH1 diffuse gliomas; receiver operator characteristic (ROC) analysis was used to assess the diagnostic performance. Subsequently, a multivariate stepwise logistic regression analysis was used to identify the independent parameters. Besides, Kruskal-Wallis H test was used to examine the differences among grades II, III, and IV diffuse gliomas.

RESULTS: All parameters but CBFmean showed significant differences between low- and high-grade diffuse gliomas. In ROC analysis, the AUC of CBFmax , rCBFmean , rCBFmax , ADCmean , and ADCmin were 0.701, 0.730, 0.746, 0.810, and 0.856 respectively. Only the value of ADCmin was identified as the independent parameter in the differentiation of low- from high-grade diffuse gliomas. All parameters but CBFmean showed significant differences among the three grades. And the values of CBFmean , CBFmax , rCBFmean , and ADCmean showed significant differences between mutant and wild-type IDH1 in grade II-III astrocytoma.

CONCLUSION: Both 3D pCASL and DWI could be useful tools for distinguishing low- from high-grade diffuse gliomas and have the potential to differentiate different IDH1 mutation statuses of astrocytoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app