Add like
Add dislike
Add to saved papers

Zebrafish VCAP1X2 regulates cardiac contractility and proliferation of cardiomyocytes and epicardial cells.

Scientific Reports 2018 May 19
Sarcomeric signaling complexes are important to sustain proper sarcomere structure and function, however, the mechanisms underlying these processes are not fully elucidated. In a gene trap experiment, we found that vascular cell adhesion protein 1 isoform X2 (VCAP1X2) mutant embryos displayed a dilated cardiomyopathy phenotype, including reduced cardiac contractility, enlarged ventricular chamber and thinned ventricular compact layer. Cardiomyocyte and epicardial cell proliferation was decreased in the mutant heart ventricle, as was the expression of pAKT and pERK. Contractile dysfunction in the mutant was caused by sarcomeric disorganization, including sparse myofilament, blurred Z-disc, and decreased gene expression for sarcomere modulators (smyd1b, mypn and fhl2a), sarcomeric proteins (myh6, myh7, vmhcl and tnnt2a) and calcium regulators (ryr2b and slc8a1a). Treatment of PI3K activator restored Z-disc alignment while injection of smyd1b mRNA restored Z-disc alignment, contractile function and cardiomyocyte proliferation in ventricles of VCAP1X2 mutant embryos. Furthermore, injection of VCAP1X2 variant mRNA rescued all phenotypes, so long as two cytosolic tyrosines were left intact. Our results reveal two tyrosine residues located in the VCAP1X2 cytoplasmic domain are essential to regulate cardiac contractility and the proliferation of ventricular cardiomyocytes and epicardial cells through modulating pAKT and pERK expression levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app