JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Novel oxazolxanthone derivatives as a new type of α-glucosidase inhibitor: synthesis, activities, inhibitory modes and synergetic effect.

Xanthone derivatives have shown good α-glucosidase inhibitory activity and have drawn increased attention as potential anti-diabetic compounds. In this study, a series of novel oxazolxanthones were designed, synthesized, and investigated as α-glucosidase inhibitors. Inhibition assays indicated that compounds 4-21 bearing oxazole rings exhibited up to 30-fold greater inhibitory activity compared to their corresponding parent compound 1b. Among them, compounds 5-21 (IC50  = 6.3 ± 0.4-38.5 ± 4.6 μM) were more active than 1-deoxynojirimycin (IC50  = 60.2 ± 6.2 μM), a well-known α-glucosidase inhibitor. In addition, the kinetics of enzyme inhibition measured by using Lineweaver-Burk analysis shows that compound 4 is a competitive inhibitor, while compounds 15, 16 and 20 are non-competitive inhibitors. Molecular docking studies showed that compound 4 bound to the active site pocket of the enzyme while compounds 15, 16, and 20 did not. More interestingly, docking simulations reveal that some of the oxazolxanthone derivatives bind to different sites in the enzyme. This prediction was further confirmed by the synergetic inhibition experiment, and the combination of representative compounds 16 and 20 at the optimal ratio of 4:6 led to an IC50 value of 1.9 ± 0.7 μM, better than the IC50 value of 7.1 ± 0.9 μM for compound 16 and 8.6 ± 0.9 μM for compound 20.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app