Add like
Add dislike
Add to saved papers

Dual-channel-coded microbeads for multiplexed detection of biomolecules using assembling of quantum dots and element coding nanoparticles.

Analytica Chimica Acta 2018 September 19
To achieve the dual-channel (analog and digital) encoding, microbeads assembled with quantum dots (QDs) and element coding nanoparticles (ECNPs) have been prepared. Dual-spectra, including fluorescence generated from quantum dots (QDs) and laser induced breakdown spectrum obtained from the plasma of ECNPs, including AgO, MgO and ZnO nanoparticles, has been adopted to provide more encoding amounts and more accurate dual recognition for encoded microbeads in multiplexed utilization. The experimental results demonstrate that the single microbead can be decoded in two optical channels. Multiplexed analysis and contrast adsorption experiment of anti-IgG verified the availability and specificity of dual-channel-coded microbeads in bioanalysis. In gradient detection of anti-IgG, we obtained the linear concentration response to target biomolecules from 3.125 × 10-10  M to 1 × 10-8  M, and the limit of detection was calculated to be 2.91 × 10-11  M.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app