Add like
Add dislike
Add to saved papers

Mass-flow-based removal and transformation potentials for TBBPA, HBCDs and PBDEs during wastewater treatment processes.

At a sewage treatment plant, 27 polybrominated diphenyl ethers, 17 methoxylated brominated diphenyl ethers, nine hydroxylated brominated diphenyl ethers, three hexabromocyclododecane diastereomers, and tetrabromobisphenol A were monitored at five major treatment stages (the influent, primary settlement stage, biological reaction stage, secondary settlement stage, and the UV irradiation disinfection stage). Hexabromocyclododecanes were the dominant chemicals, contributing 40% of the total concentrations of the chemicals in the dissolved phase of the sewage. Brominated flame retardant mass flow in the wastewater was lower after than before the biological reaction stage, and more than 70% of the inflowing mass load was removed from the mainstream wastewater by becoming associated with the sludge. More than half of mass loads of parent brominated flame retardants in the wastewater were removed after the treatments, but up to 10% of the initial mass loads remained in the final effluent and was expected to be released into the aquatic environment. The hydroxylated and methoxylated brominated diphenyl ether concentrations decreased by <25%, much less than the polybrominated diphenyl ethers. It is possible that hydroxylated and methoxylated polybrominated diphenyl ethers formed through the transformation of polybrominated diphenyl ethers during the biological reactions of treatment processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app