Add like
Add dislike
Add to saved papers

Alkaline active cyanide dihydratase of Flavobacterium indicum MTCC 6936: Growth optimization, purification, characterization and in silico analysis.

The present work explores a rare cyanide dihydratase of Flavobacterium indicum MTCC 6936 for its potential of cyanide degradation. The enzyme is purified to 12 fold with a yield of 76%. SDS and native-PAGE analysis revealed that enzyme was monomer of 40 kDa size. The enzyme works well in mesophilic range at wide array of pH. The thermostability profile of cyanide dihydratase revealed that the enzyme is quite stable at 30 °C and 35 °C with half-life of 6 h 30 min and 5 h respectively. Km and Vmax for cyanide dihydratase of F. indicum was measured to be 4.76 mM and 45 U mg-1 with kcat calculated to be 27.3 s-1 and specificity constant (kcat /Km ) to be around 5.67 mM-1  s-1 . MALDI-TOF analysis of purified protein revealed that the amino acid sequence has 50% and 43% sequence identity with putative amino acid sequence of F. indicum and earlier reported cyanide dihydratase of Bacillus pumilus respectively. Homology modeling studies of cyanide dihydratase of F. indicum predicted the catalytic triad of the enzyme indicating Cys at 164, Glu at 46 and Lys at 130th position. The purified enzyme has potential applications in bioremediation and analytical sector.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app