JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Abnormal Sleep Architecture and Hippocampal Circuit Dysfunction in a Mouse Model of Fragile X Syndrome.

Neuroscience 2018 August 2
Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and single-gene cause of autism spectrum disorder. The Fmr1 null mouse models much of the human disease including hyperarousal, sensory hypersensitivity, seizure activity, and hippocampus-dependent cognitive impairment. Sleep architecture is disorganized in FXS patients, but has not been examined in Fmr1 knockout (Fmr1-KO) mice. Hippocampal neural activity during sleep, which is implicated in memory processing, also remains uninvestigated in Fmr1-KO mice. We performed in vivo electrophysiological studies of freely behaving Fmr1-KO mice to assess neural activity, in the form of single-unit spiking and local field potential (LFP), within the hippocampal CA1 region during multiple differentiated sleep and wake states. Here, we demonstrate that Fmr1-KO mice exhibited a deficit in rapid eye movement sleep (REM) due to a reduction in the frequency of bouts of REM, consistent with sleep architecture abnormalities of FXS patients. Fmr1-KO CA1 pyramidal cells (CA1-PCs) were hyperactive in all sleep and wake states. Increased low gamma power in CA1 suggests that this hyperactivity was related to increased input to CA1 from CA3. By contrast, slower sharp-wave ripple events (SWRs) in Fmr1-KO mice exhibited longer event duration, slower oscillation frequency, with reduced CA1-PC firing rates during SWRs, yet the incidence rate of SWRs remained intact. These results suggest abnormal neuronal activity in the Fmr1-KO mouse during SWRs, and hyperactivity during other wake and sleep states, with likely adverse consequences for memory processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app