Add like
Add dislike
Add to saved papers

Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia.

There are many infectious diseases that can be spread by daily commuting of people and dengue fever is one of them. The absence of vaccine and irregularities in ongoing vector control programs make this disease the most frequent and persistent in many tropical and subtropical regions of the world. This paper targets to access the effects of daily commuting on dengue transmission dynamics by using a deterministic two-patch model fitted to observed data gathered in Cali, Colombia where dengue fever is highly persistent and exhibits endemo-epidemic patterns. The two-patch dengue transmission model with daily communing of human residents between patches (that is, between the city and its suburban areas) is presented using the concept of residence times, which certainly affect the disease transmission rates by inducing variability in human population sizes and vectorial densities at each patch. The same modeling framework is applied to two primary scenarios (epidemic outbreaks and endemic persistence of the disease) and for each scenario two coupling cases (one-way and asymmetric commuting) with different inflow and outflow intensities are analyzed. The concept of effective vectorial density, introduced in this paper, allows to explain in very simple terms why the daily commuting affects quite differently the dengue morbidity among human residents in both patches. In particular, residents of the patch with a greater share of incoming than outgoing commuters may actually "benefit" from inflow of daily commuter by avoiding a considerable number of infections. However, residents of the patch with a greater share of outgoing than incoming commuters, especially those who stay at home patch, incur more risk of getting infected. Additionally, the model shows that daily commuting enhance the total number of human infections acquired in both patches and may even provoke an epidemic outbreak in one patch while moderately lowering the level of the disease persistence in another patch.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app