Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

l-Arginine-Catalyzed Synthesis of Nanometric Organosilica Particles through a Waterborne Sol-Gel Process and Their Porous Structure Analysis.

We report an efficient and easy-to-implement waterborne sol-gel process for the synthesis of nanometric organosilica particles. In this process, tetraethyl orthosilicate (TEOS) and 3-(methacryloxy)propyl trimethoxy silane (γ-MPS), employed as silica sources, were heterogeneously delivered in an aqueous solution of l-arginine, a basic amino acid used as a catalyst, from a top organic layer. Co-condensation of TEOS with γ-MPS led to the formation of organosilica particles with diameters between 30 and 230 nm when increasing the γ-MPS content from 0 to 10.1 mol % in the silica source. Nitrogen sorption analyses confirmed the microporous nature of the obtained particles after calcination. The Brunauer-Emmett-Teller (BET) surface areas increased from 27 (before calcination) to 684 m2 g-1 (after calcination) for the organosilica particles containing 10.1 mol % of γ-MPS. Fourier transform infrared spectroscopy and 29 Si NMR were employed to analyze the chemical structure of the organosilica spheres and provide insight into the mechanism of particle formation. In the second part, hybrid organosilica particles with a core-shell morphology were synthesized through the combination of Pickering emulsion and the sol-gel process. γ-MPS emulsion droplets stabilized by tiny silica particles (formed in a separate step) were first generated and used as seeds to grow a silica shell on their surface through TEOS addition from the top organic layer. Transmission electron microscopy and pore size analyses of the resulting particles after calcination revealed a unique dual-porosity structure with a mesoporous inner core and a micro/mesoporous silica shell with ink-bottle-type pores.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app