JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Large PAMAM Dendron Induces Formation of Unusual P4 3 32 Mesophase in Monoolein/Water Systems.

Compact macromolecular dendrons have previously been shown to induce the formation of discontinuous inverse micellar assemblies with Fd3 m symmetry in monoolein/water systems. Here, we demonstrate that a large PAMAM dendron (G5: fifth generation) induces the formation of a very unusual mesophase with P43 32 symmetry. This mesophase had previously been observed in monoolein/water systems only on addition of cytochrome c. The P43 32 mesophase can be considered an intermediate phase between the bicontinuous Ia3 d and discontinuous micellar mesophases. We present a detailed investigation of the phase behavior of monoolein/water as a function of G5 concentration and temperature. Addition of 1% G5 in 85/15 monoolein/water system induces a transition from the Lα to Ia3 d phase. Further increase in G5 concentration to above 2% induces the formation of the P43 32 phase. In contrast to this, incorporation of lower generation PAMAM dendrons (G2-G4) in monoolein/water yields a qualitatively different phase diagram with the formation of the reverse micellar Fd3 m phase. PAMAM dendrons of all generations, G2-G5, bear terminal amine groups that interact with the monoolein headgroup. The compact molecular architecture of the dendrons and these attractive interactions induce bending of the monoolein bilayer structure. For smaller dendrons, G2-G4, this results in the formation of the Fd3 m phase. However, the large size of the G5 dendron precludes this and a rare intermediate phase between the Ia3 d and discontinuous micellar phase, and the P43 32 mesophase forms instead.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app