Add like
Add dislike
Add to saved papers

Biodegradation of asphaltene and petroleum compounds by a highly potent Daedaleopsis sp.

Petroleum, as the major energy source, is indispensable from our lives. Presence of compounds resistant to degradation can pose risks for human health and environment. Basidiomycetes have been considered as powerful candidates in biodegradation of petroleum compounds via secreting ligninolytic enzymes. In this study a wood-decaying fungus was isolated by significant degradation ability that was identified as Daedaleopsis sp. by morphological and molecular identification methods. According to GC/MS studies, incubation of heavy crude oil with Daedaleopsis sp. resulted in increased amounts of <C24 hydrocarbons and decreased amounts of >C24 compounds. Degradation of asphaltene, anthracene, and dibenzofuran by the identified fungal strain was determined to evaluate its potential in biodegradation. After 14 days of incubation, Daedaleopsis sp. could degrade 93.7% and 91.2% of anthracene and dibenzofuran, respectively, in pH 5 and 40 °C in optimized medium, as revealed by GC/FID. Notably, analysis of saturates, aromatics, resins, and asphaltenes showed a reduction of 88.7% and 38% in asphaletene and aromatic fractions. Laccase, lignin peroxidase, and manganese peroxidase activities were enhanced from 51.3, 145.2, 214.5 U ml-1 in the absence to 121.5, 231.4, and 352.5 U ml-1 in the presence of heavy crude oil, respectively. This is the first report that Daedaleopsis sp. can degrade asphaltene and dibenzofuran. Moreover, compared to the reported results of asphaltene biodegradation, this strain was the most successful. Thus, Daedaleopsis sp. could be a promising candidate for biotransformation of heavy crude oil and biodegradation of recalcitrant toxic compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app