Add like
Add dislike
Add to saved papers

Modified device for fluid percussion injury in rodents.

Fluid percussion (FP) injury model is a popular animal model of traumatic brain injury (TBI), but still there are some issues need to be addressed. To increase the validity and reliability of this technique, we adapted the FP device using electromagnetic protractor, stainless-steel cylinder, changing pressure transducer position, and foam pads to adjust the parameters of FP pulse. Besides, the adjusted FP device is more automatic. The FP pulse is promptly measured and displayed in a graphic user interface software. The modified device resulted in reliable FP pulse. The accuracy of the pendulum leveling was improved with using the electromagnetic protractor with slots. We then collected behavioral, cognition, electrophysiological, and immunohistochemical data to verify the percussion effects in TBI mice. Lateral fluid percussion injury (FPI) or sham treatment was administered at the right frontal motorsensory region of male C57BL/6J mice. TBI mice showed evident motor, cognitive, and functional impairments, characterized by evaluation of neurological, righting, geotaxis and cliff aversion reflexes, limb asymmetrical use, rotarod running, and Morris water maze testing. The neurobehavioral damages were scaled with histopathological findings. Further, the overall firing rates and theta powers in hippocampal CA1 were significantly reduced in TBI mice compared to sham mice at Days 2 and 3 after electrode implanting. The adapted device induced effects on behavior and biology in mice that agree with existing models. These findings confirmed the validity of adjustments, and the modified device may boost the interest in TBI studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app