Add like
Add dislike
Add to saved papers

Porous lithium-doped hydroxyapatite scaffold seeded with hypoxia-preconditioned bone-marrow mesenchymal stem cells for bone-tissue regeneration.

Hydroxyapatite (HA) is a commonly used biomaterial in bone-tissue engineering, but pure HA is deficient in osteoinduction. In this study, we fabricated scaffolds of lithium-doped HA (Li-HA) and assess the bone generation enhancement of Li-HA scaffolds seeded with hypoxia-preconditioned bone-marrow mesenchymal stem cells (BMMSCs). We found that 1.5%Li-HA obtained optimal cell proliferation activity in vitro. In an in vivo study, Li-HA/BMSCs enhanced new bone formation, reducing the GSK-3β and increasing the β-catenin, but the angiogenic effect was not modified significantly. However, when the seeded BMMSCs had been preconditioned in hypoxia condition, the new bone formation was increased, with lower GSK-3β and higher β-catenin amounts detected. The HIF-1α secretion was up-regulated, and the vascular endothelial growth factor and CD31 expression increased. In conclusion, the bone scaffold developed from Li-doped HA seeded with hypoxia-preconditioned BMMSCs exerted positive effect on activating the Wnt and HIF-1α signal pathway, and showed good osteogenesis and angiogenesis potential. The composited scaffold contributed to an encouraging result in bone regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app