Add like
Add dislike
Add to saved papers

In Situ Spectroelectrochemical Monitoring of Dye Bleaching after Electrogeneration of Chlorine-Based Species: Application to Chloride Detection.

Spectroelectrochemical techniques are becoming increasingly versatile tools to solve a diverse range of analytical problems. Herein, the use of in situ real-time luminescence spectroelectrochemistry to quantify chloride ions is demonstrated. Utilizing the bleaching effect of chlorine-based electrogenerated products after chloride oxidation, it is shown that the fluorescence of the rhodamine 6G dye decreases proportionally to the initial chloride concentration in solution. A strong decrease of fluorescence is observed in acidic media compared to a lower decrease in alkaline media, which suggests that Cl2 , favorably generated at low pH, could be the main species responsible for the fluorescence loss. This fact is corroborated with chronoamperometric measurements where the complete loss of fluorescence for the bulk solution is achieved. A fast mass transfer is needed to explain this behavior, in agreement with the generation of gaseous species such as Cl2 . Chloride detection was performed in artificial sweat samples in less than 30 s with great accuracy. This electrochemical/optical combined approach allows us to quantify species that are difficult to measure by electrochemistry due to the inadequate resolution of their redox processes or being without significant optical properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app