Add like
Add dislike
Add to saved papers

Dietary Zinc Modulates Matrix Metalloproteinases in Traumatic Brain Injury.

Journal of Neurotrauma 2018 October 16
Animal models of mild traumatic brain injury (mTBI) provide opportunity to examine the extent to which dietary interventions can be used to improve recovery after injury. Animal studies also suggest that matrix metalloproteinases (MMPs) play a role in tissue remodeling post-TBI. Because dietary zinc (Zn) improved recovery in nonblast mTBI models, and the MMPs are Zn-requiring enzymes, we evaluated the effects of low- (LoZn) and adequate-Zn (AdZn) diets on MMP expression and behavioral responses, subsequent to exposure to a single blast. MMP messenger RNA expression in soleus muscle and frontal cortex tissues were quantified at 48 h and 14 days post-blast. In muscle, blast resulted in significant upregulation of membrane-type (MT)-MMP, MMP-2, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 at 48 h post-injury in rats consuming AdZn. At 14 days post-blast, there were no blast or dietary effects observed on MMP levels in muscle, supporting the existence of a Zn-responsive, functional repair and remodeling mechanism. In contrast, blast resulted in a significant downregulation of MT-MMP, TIMP-1, and TIMP-2 and a significant upregulation of MMP-3 levels at 48 h post-injury in cortex tissue, whereas at 14 days post-blast, MT-MMP, MMP-2, and TIMP-2 were all downregulated in response to blast, independent of diet, and TIMP-1 were significantly increased in rats fed AdZn diets despite the absence of elevated MMPs. Because the blast injuries occurred while animals were under general anesthesia, the increased immobility observed post-injury in rats consuming LoZn diets suggest that blast mTBI can, in the absence of any psychological stressor, induce post-traumatic stress disorder-related traits that are chronic, but responsive to diet. Taken together, our results support a relationship between marginally Zn-deficient status and a compromised regenerative response post-injury in muscle, likely through the MMP pathway. However, in neuronal tissue, changes in MMP/TIMP levels after blast indicate a variable response to marginally Zn-deficient diets that may help explain compromised repair mechanism(s) previously associated with the systemic hypozincemia that develops in patients with TBI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app