Add like
Add dislike
Add to saved papers

Reconstructing Supramolecular Aggregates to Nitrogen-Deficient g-C 3 N 4 Bunchy Tubes with Enhanced Photocatalysis for H 2 Production.

Developing a facile method to overcome the intrinsic shortcomings of g-C3 N4 photocatalyst concerning its insufficient visible light absorption and dissatisfactory separation efficiency of charge carriers is of great significance but remains a challenge. In this work, we report, for the first time, a sapiential strategy for preparing highly efficient nitrogen-deficient g-C3 N4 featuring bunchy microtubes [R-tubular carbon nitride (TCN)] via a KOH-assisted hydrothermal treatment of rodlike melamine-cyanuric acid (RMCA) supramolecular aggregates followed by heating the reconstructed RMCA, in which KOH serves as an all-rounder for breaking hydrogen bonds, accelerating hydrolysis of melamine and nitrogen defects forming. This approach endows R-TCN with unique bunchy microtube morphology, enriched nitrogen defects, textural properties, and electronic structure, which result in narrower band gap, higher electric conductivity, more active sites, more negative conductive band, significantly increased visible light harvesting capability, and improved separation efficiency of charge carriers. As a consequence, R-TCN shows 2.44 and 39 times higher hydrogen evolution rate (8.19 μmol h-1 ) than that of the pristine TCN from RMCA and bulk g-C3 N4 from melamine. This new discovery may open a new avenue to fabricate highly efficient g-C3 N4 catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app