JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Programmed necrosis in cardiomyocytes: mitochondria, death receptors and beyond.

Excessive death of cardiac myocytes leads to many cardiac diseases, including myocardial infarction, arrhythmia, heart failure and sudden cardiac death. For the last several decades, most work on cell death has focused on apoptosis, which is generally considered as the only form of regulated cell death, whereas necrosis has been regarded to be an unregulated process. Recent findings reveal that necrosis also occurs in a regulated manner and that it is closely related to the physiology and pathophysiology of many organs, including the heart. The recognition of necrosis as a regulated process mandates a re-examination of cell death in the heart together with the mechanisms and therapy of cardiac diseases. In this study, we summarize the regulatory mechanisms of the programmed necrosis of cardiomyocytes, that is, the intrinsic (mitochondrial) and extrinsic (death receptor) pathways. Furthermore, the role of this programmed necrosis in various heart diseases is also delineated. Finally, we describe the currently known pharmacological inhibitors of several of the key regulatory molecules of regulated cell necrosis and the opportunities for their therapeutic use in cardiac disease. We intend to systemically summarize the recent progresses in the regulation and pathological significance of programmed cardiomyocyte necrosis along with its potential therapeutic applications to cardiac diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app