Add like
Add dislike
Add to saved papers

Topographical assessment of neurocortical connectivity by using directed transfer function and partial directed coherence during meditation.

Cognitive Processing 2018 November
Due to the presence of nonlinearity and volume conduction in electroencephalography (EEG), sometimes it's challenging to find out the actual brain network from neurodynamical alteration. In this paper, two well-known time-frequency brain connectivity measures, namely partial directed coherence (PDC) and directed transfer function (DTF), have been applied to evaluate the performance analysis of EEG signals obtained during meditation. These measures are implemented to the multichannel meditation EEG data to get the directed neural information flow. Mostly the assessment of PDC and DTF is entirely subjective and there are probabilities to have erroneous connectivity estimation. To avoid the subjective evaluation, the performance results are compared in terms of absolute energy, signal-to-noise ratio (SNR) and relative SNR (R-SNR) scale. In most of the cases, the PDC result is found to be more efficient than DTF. The limitation of DTF and PDC in terms of the time-varying multivariate autoregressive (MVAR) model is highlighted. The time-varying MVAR model can track the neurodynamical changes better than any other method. In the present study, we would like to show that the PDC-based connectivity gives a better understanding of the non-symmetric relation in EEG obtained during Kriya Yoga meditation in comparison to DTF. However, it needs to be investigated further to warrant this claim.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app