Add like
Add dislike
Add to saved papers

Predicting transmission blocking potential of anti-malarial compounds in the Mosquito Feeding Assay using Plasmodium falciparum Male Gamete Inhibition Assay.

Scientific Reports 2018 May 18
Plasmodium falciparum Standard Membrane Feeding Assay (PfSMFA) is the current gold standard mosquito based confirmatory transmission blocking (TrB) assay for human malaria. However, owing to its complexity only selected gametocytocidal molecules are progressed into SMFA. Predictive tools for evaluation of TrB behavior of compounds in SMFA would be extremely beneficial, but lack of substantially large data sets from many mosquito feeds preempts the ability to perform correlations between outcomes from in vitro assays and SMFA. Here, a total of 44 different anti-malarial compounds were screened for inhibitory effect on male gamete formation in exflagellation inhibition assay (EIA) and the same drug-treated parasites were fed to mosquitoes in SMFA. Regression analysis was performed between outcomes of the two assays and regression models were applied to a randomly selected validation set of four compounds indicating no overfitting and good predictive power. In addition, the pIC50 for 11 different compounds obtained in the EIA was also correlated with pIC50's in SMFA. Resulting regression models provided pIC50 predictions in SMFA with reasonably good accuracy thereby demonstrating the use of a simple in vitro assay to predict TrB of molecules in a complex mosquito based assay.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app