Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Extraordinary plasticity of an inorganic semiconductor in darkness.

Science 2018 May 19
Inorganic semiconductors generally tend to fail in a brittle manner. Here, we report that extraordinary "plasticity" can take place in an inorganic semiconductor if the deformation is carried out "in complete darkness." Room-temperature deformation tests of zinc sulfide (ZnS) were performed under varying light conditions. ZnS crystals immediately fractured when they deformed under light irradiation. In contrast, it was found that ZnS crystals can be plastically deformed up to a deformation strain of εt = 45% in complete darkness. In addition, the optical bandgap of the deformed ZnS crystals was distinctly decreased after deformation. These results suggest that dislocations in ZnS become mobile in complete darkness and that multiplied dislocations can affect the optical bandgap over the whole crystal. Inorganic semiconductors are not necessarily intrinsically brittle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app