Add like
Add dislike
Add to saved papers

Cellulose-based molecularly imprinted red-blood-cell-like microparticles for the selective capture of cortisol.

Carbohydrate Polymers 2018 August 2
Magnetite-nanoparticle-containing red-blood-cell-like-microparticles (M-RBC-MPs) with a selective ability for trapping cortisol (COR) were synthesized by an electrospray technique of a molecularly imprinted ethyl(hydroxyethyl) cellulose (EHEC)-based precursor. The as-synthezied M-RBC-MPs were ∼3-μm-disks with a dent. M-RBC-MPs contained magnetite nanoparticles below 15 nm in diameter, which exhibited magnetization and no room-temperature coercivity. The molecularly imprinted M-RBC-MPs (MI-M-RBC-MPs) passed through pores less than their diameter. The MI-M-RBC-MPs selectively trapped COR from a solution containing molecules similar to COR, whereas non-imprinted M-RBC-MPs did not trap COR. Furthermore, magnets were used to capture the water-dispersed MI-M-RBC-MPs flowing in a tube. Based on the above results, MI-M-RBC-MPs may selectively trap COR while simultaneously circulating in the blood, followed by their removal from the blood using magnets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app