JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Backbone-Cyclized Peptides: A Critical Review.

Backbone-cyclized peptides and peptidomimetics integrate the biological activity and pharmacological features necessary for successful research tools and therapeutics. In general, these structures demonstrate improved maintenance of bioactive conformation, stability and cell permeability compared to their linear counterparts, while maintaining support for a variety of side chain chemistries. We explain how backbone cyclization and cycloscan techniques allow scientists to cyclize linear peptides with retained or enhanced biological activity and improved drug-like features. We discuss head-to-tail (Cterminus to N-terminus), building unit-to-tail, building unit-to-side chain, building unit-to-building unit, and building unit-to-head backbone cyclization, with examples of building blocks, such as Nα-(ω- thioalkylene), Nα-(ω-aminoalkylene) and Nα-(ω-carboxyalkylene) units. We also present several methods for recombinant expression of backbone-cyclized peptides, including backbone cyclic peptide synthesis using recombinant elements (bcPURE), phage display and induced peptidyl-tRNA drop-off. Moreover, natural backbone-cyclized peptides are also produced by cyanobacteria, plants and other organisms; several of these compounds have been developed and commercialized for therapeutic applications, which we review. Backbone-cyclized peptides and peptidomimetics comprise a growing share of the pharmaceutical industry and will be applied to additional problems in the near future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app