JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Spheroids of stem cells as endochondral templates for improved bone engineering.

Osteodegenerative disease and bone fractures lead to bone damage or loss, requiring new bone formation to replace the damaged tissues. Classical 'top-down' tissue engineering relies on seeding cell suspensions into biomaterial scaffolds, and then guiding cell fate by growth factors. However, complex tissue fabrication using this approach has important limitations. 'Bottom-up' tissue engineering has the potential to overcome the drawbacks of the top-down approach, by using 'building blocks' of cell spheroids for tissue biofabrication without a scaffold. Spheroids are 3D structures that resemble the physiological tissue microenvironment and can be produced in vitro by different methods. Spheroids of mesenchymal stem cells (MSC) and adipose stem cells (ASC) have regenerative properties. Here we review, the use of spheroids as 'building blocks' in the 3D bioprinting of large-scale bone tissue and as a promising alternative for the treatment of osteodegenerative diseases and in bone engineering, including endochondral ossification (or developmental engineering).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app