Add like
Add dislike
Add to saved papers

Effect of temperature on production of oligosaccharides and dextran by Weissella cibaria 10 M.

The formation of HoPS and oligosaccharides in sourdough fermentation improves bread quality but is dependent on the expression of glycansucrases by lactic acid bacteria. Data on the expression of dextransucrases by Weissella spp., however, are limited. This study therefore aimed to assess dextansucrase expression in W. cibaria 10 M, focusing on the effect of temperature. The effect of temperature on growth, oligosaccharide and dextran synthesis by W. cibaria 10 M was determined and the expression and activity of cell-associated dextransucrase from W. cibaria 10 M were investigated. The oligosaccharides profiles were measured by thin layer chromatography and high performance anion exchange chromatography coupled to pulsed amperometric detection. Dextran formation was quantified by size exclusion chromatography. W. cibaria grew fastest at 30 °C but oligosaccharide formation was highest at 20 °C or less. Dextransucrase expression as measured by reverse transcription quantitative PCR, SDS-PAGE, and activity of cell-associated dextransucrase were maximal at 15 °C. Cold shift incubation, characterized by incubation at 30 °C to obtain biomass, followed by shift to 6 °C to induce dextransucrase expression, supported high dextransucrase activity in laboratory media. Cold shift fermentation of wheat and sorghum sourdoughs supplemented with 15 or 30% sucrose increased the yields of oligosaccharides, and resulted in formation of 16 and 12 g/kg dextran in wheat and sorghum sourdoughs, respectively. Dextran formation was decreased in favour of oligosaccharide formation when doughs were supplemented with maltose. In conclusion, cold shift fermentation of sourdough with W. cibaria supports high dextran yields or formation of oligosaccharides without excess acidification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app