Add like
Add dislike
Add to saved papers

Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar.

Chemosphere 2018 September
Biochar is a beneficial soil amendment but the changes in its surface properties during the aging process, especially the oxygen-containing functional groups and the associated adsorption behaviors, are not well documented. In this paper, the aged wheat straw biochar was simulated by chemical oxidation with HNO3 -H2 SO4 and NaOH-H2 O2 systems. Characterization results showed that carbon loss and oxygen incorporation ran throughout the aging process. Surface oxygen-containing functional groups were found to be increased in all treated biochars, especially for carboxyl. Much more developed mesopores were observed in aging biochar, specific surface area was increased by 126% for biochar treated with NaOH-H2 O2 , and 226% for biochar treated with 40% of HNO3 -H2 SO4 . Thermogravimetric analysis showed that the increasing oxygen-containing functional groups led to 14% and 30% mass loss by treating biochar with alkali and acid, respectively. The improved biochar surface through the increase of oxygen-containing functional groups enhanced the cadmium sorption capacity, and the sorption capacity increased by 21.2% in maximum. Roughed surface from oxidation was another reason for increasing cadmium adsorption. Results indicated that the adsorption performance of biochar on pollutant would be changed during aging process along with the changing surface properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app