Add like
Add dislike
Add to saved papers

Effect of excipient properties, water activity, and water content on the disproportionation of a pharmaceutical salt.

Excipients are crucial components of most pharmaceutical formulations. In the case of a solid oral dosage formulation containing the salt form of a weakly ionizable drug, excipient selection is critical, as some excipients are known to cause salt disproportionation (conversion of salt to the free form). Therefore, robust formulation design necessitates an in-depth understanding of the factors impacting salt disproportionation during processing or storage as this can negatively impact product quality and performance. To date, there is an incomplete understanding of key excipient properties influencing salt disproportionation. Specifically, the potential roles of amorphous excipient glass transition temperature and excipient hygroscopicity, if any, on salt disproportionation are still not well understood. Furthermore, the relationship between the compression and the extent of salt disproportionation is an unknown factor. Herein, by utilizing various grades of polyvinylpyrrolidone (PVP), its copolymer, copovidone (PVPVA), and magnesium stearate, a systematic investigation of disproportionation was performed using pioglitazone HCl as a model salt of a weak base. It was observed that there was a poor correlation between excipient hygroscopicity and the rate and extent of disproportionation. However, powder compression into compacts enhanced the rate and extent of disproportionation. This work focused on disproportionation of the salt of a weak base, as basic drugs are more prevalent, however, salts of weak acids may have similar tendencies under relevant conditions. The knowledge gained from this study will help in understanding the role of various excipients with respect to salt disproportionation, paving the way for designing stable salt formulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app