Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nanoliter Cell Culture Array with Tunable Chemical Gradients.

A multitude of cell screening assays for diagnostic and research applications rely on quantitative measurements of a sample in the presence of different reagent concentrations. Standard methods rely on microtiter plates of varying well density, which provide simple and standardized sample addressability. However, testing hundreds of chemical dilutions requires complex automation, and typical well volumes of microtiter plates are incompatible with the analysis of a small number of cells. Here, we present a microfluidic device for creating a high-resolution chemical gradient spanning 200 nanoliter wells. Using air-based shearing, we show that the individual wells can be compartmentalized without altering the concentration gradient, resulting in a large set of isolated nanoliter cell culture wells. We provide an analytical and numerical model for predicting the concentration within each culture chamber and validate it against experimental results. We apply our system for the investigation of yeast cell metabolic gene regulation in the presence of different ratios of galactose/glucose concentrations and successfully resolve the nutrient threshold at which the cells activate the galactose pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app