Add like
Add dislike
Add to saved papers

Functional optical coherence tomography of neurovascular coupling interactions in the retina.

Quantitative evaluation of retinal neurovascular coupling is essential for a better understanding of visual function and early detection of eye diseases. However, there is no established method to monitor coherent interactions between stimulus-evoked neural activity and hemodynamic responses at high resolution. Here, we report a multimodal functional optical coherence tomography (OCT) imaging methodology to enable concurrent intrinsic optical signal (IOS) imaging of stimulus-evoked neural activity and hemodynamic responses at capillary resolution. OCT angiography guided IOS analysis was used to separate neural-IOS and hemodynamic-IOS changes in the same retinal image sequence. Frequency flicker stimuli evoked neural-IOS changes in the outer retina; that is, photoreceptor layer, first and then in the inner retina, including outer plexus layer (OPL), inner plexiform layer (IPL), and ganglion cell layer (GCL), which were followed by hemodynamic-IOS changes primarily in the inner retina; that is, OPL, IPL, and GCL. Different time courses and signal magnitudes of hemodynamic-IOS responses were observed in blood vessels with various diameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app