Add like
Add dislike
Add to saved papers

"Two-in-one" organic-inorganic hybrid Mn II complexes exhibiting dual-emissive phosphorescence.

Unprecedented organic-inorganic hybrid complexes, [Mn(L)3]MnHal4, containing both four- and hexacoordinated Mn2+ ions were synthesized by reacting MnCl2 or MnBr2 with bis(phosphine oxide) ligands (L) such as dppmO2, dppeO2, and 2,3-bis(diphenylphosphinyl)-1,3-butadiene (dppbO2). In the [Mn(L)3]2+ cation of the complexes, the Mn2+ ion features a [MnO6] octahedral coordination environment (Oh), and the [MnHal4]2- anion adopts a tetrahedral geometry (Td). These "two-in-one" complexes exhibit strong long-lived luminescence (τav = 12-15 ms at 300 K) having interesting thermochromic behavior attributed to the thermal equilibrium between two emission bands. So, in an emission spectrum of the typical complex [Mn(dppbO2)3]MnBr4, the intense "red" (ca. 620 nm) and weak "green" (ca. 520 nm) bands, originating from Mn2+ ions in Oh and Td environments, respectively, are observed. Cooling from 300 to 77 K simultaneously leads to (i) redshift of both bands by ca. 20 nm, (ii) increasing their intensities, and (iii) causing a substantial change of their integral intensity ratio from about 4 : 1 to 2 : 1. As a result, the colour of the emission changes from orange (CIE 0.56, 0.45) at 300 K to deep red (CIE 0.62, 0.39) at 77 K. This behavior was rationalized using steady-state and time-resolved fluorescent spectroscopy at various temperatures. The high photoluminescence quantum yields (up to 61% at 300 K) and fascinating dual-emissive phosphorescence coupled with high thermal stability and solubility suggest a high potential of this novel class of emissive Mn2+ complexes as promising emitters for OLED devices and potential stimuli-responsive materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app