Add like
Add dislike
Add to saved papers

A simple technique to prolong molding time during application of a fiberglass cast: An in vitro study.

Orthopedic Reviews 2018 March 30
Casting is routinely used for acute and post-operative immobilization and remains a cornerstone in the non-operative management of fractures and deformities. The application of a properly fitted and wellmolded cast, especially for a trainee, can be challenging. We present a simple method of prolonging cure time of fiberglass cast - placing ice in the dip water. Eight-ply, fiveinch fiberglass cast was circumferentially applied to an aluminum-wrapped cardboard cylinder. An electronic, 2-channel temperature sensor (TR-71wf Temp Logger, T&D Corporation, Matsumoto, Japan), accurate to 0.1ºC and accurate to ±0.3ºC, was placed between the fourth and fifth layers of fiberglass. Thirty total casts were tested using 9±1ºC (cold), 22±1ºC (ambient), and 36±1ºC (warm) dip water. Room temperature was maintained at 24±1ºC. Cast temperatures were measured during the exothermic reaction generated by the cast curing. Peak temperatures and cure times were recorded. Cure time was defined as the point of downward deflection on the timetemperature curve immediately after peak. Cure and peak temperatures were compared among groups using analysis of variance. Mean cure time was 3.5±0.1 minutes for warm water, 5.0±0.4 minutes for ambient water and 7.0±0.5 minutes for cold water. Peak temperature, measured between layers 4 and 5 of the cast material, was 36.6±0.8ºC for warm water, 31.1±1.4ºC for ambient water and 25.2±0.5ºC for cold water. Cold afforded, on average, an additional 2 minutes (40% increase) in cure time compared to ambient water and an additional 3.5 minutes (100% increase) compared to warm water. Cure time differences were significant (P<0.001) for all groups, as were peak temperature differences (P<0.001). Temperatures concerning for development of burns were never reached. Utilizing iced dip water when casting is a simple and effective method to prolong the time available for cast application. Orthopedic residents and trainees may find this useful in learning to fabricate a high quality cast. For the experienced orthopedic surgeon, this method eliminates the need to bridge longlimb casts and facilitates the application of complex casts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app