Add like
Add dislike
Add to saved papers

Solid dissolution in a fluid solvent is characterized by the interplay of surface area-dependent diffusion and physical fragmentation.

Scientific Reports 2018 May 17
The processes of dissolution and fragmentation have high relevance in pharmaceutical research, medicine, digestive physiology, and engineering design. Experimentally, dissolution and fragmentation are observed to occur simultaneously, yet little is known about the relative importance of each of these processes and their impact on the dissolution process as a whole. Thus, in order to better explain these phenomena and the manner in which they interact, we have developed a novel mathematical model of dissolution, based on partial differential equations, taking into consideration the two constituent processes of surface area-dependent diffusive mass removal and physical fragmentation of the solid particles, and the basic physical laws governing these processes. With this model, we have been able to quantify the effects of the interplay between these two processes and determine the optimal conditions for rapid solid dissolution in liquid solvents. We were able to reproduce experimentally observed phenomena and simulate dissolution under a wide range of experimentally occurring conditions to give new perspectives into the kinetics of this common, yet complex process. Finally, we demonstrated the utility of this model to aid in experiment and device design as an optimisation tool.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app